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ABSTRACT 

The primary objective of this contract was to develop an understanding from first prin- 

ciples of the macroscopic particle force equation arising from the microscopic particle and 

field interaction dynamics and to incorporate those effects in a self-consistent state-space 

(rate equation) particle-in-cell (PIC) calculation. Effective current and charge density time- 

domain equation models were to be developed from this generalized Lorentz force model. 

Also to be developed in this project were the numerical modeling techniques that would allow 

the self-consistent coupling of the particle motions and the evolution of the electromagnetic 

fields in the presence of complex electromagnetic scatterers. The resulting simulators were 

to be applied to a variety of high power microwave (HPM) source configurations. 

The specific tasks considered during the contract period included: 

1. develop a generalized Lorentz force equation to include self-forces on the particles and 

to develop its equivalent current and charge rate equations directly in the space-time 

domain; 

2. develop the PIC tools and techniques for modeling the interaction of intense electro- 

magnetic fields with one or several particles in one, two, and three space dimensions 

and time; 

3. apply the resulting simulators to study the generation of microwaves in a HPM source 

cavity, particularly by predicting any additional microscopically-derived force effects 

on a large number of charged particles; and 

4. apply the resulting simulators to study a many-particle plasma system typically found 

in HPM sources. 



1    INTRODUCTION 

The starting point of all physical-space and physical-time PIC codes is to divide space and 

time into discrete cells, i.e., form a space-time grid or lattice. The continuum differential 

equations describing the evolution of the fields and particles are given, for instance, in the 

non-relativistic limit by the Maxwell-particle system 

dtH   =   --VxE 

1 1  - 
dtE   =   - V xH--J 

e e 
dtf  =   v 

dtv   =   —{E + ftvxH) 
m 

V-(eE)   =   p 

V-{fiH)   =   0 

J   =   pv (1) 

where the charge density is determined by the individual particle locations through the 

expression 

In a PIC code the charged particles % are tracked individually (by calculating their tra- 

jectories fj) and their contributions to the total electromagnetic field are self-consistently 

calculated with that field. 



To numerically implement this system of equations, one must assign all of the field and 

charge quantities to the discrete grid. The typical approach is to use a 0 grid finite difference 

approximation for all of the 0. This leads to a second order accurate system of equations of 

the form: 

£(n+l/2)     =    £(n-l/2) _ &* (y x fi{n)\ 

ß   K ' 

tf(n+l/2)     =    ^-l/2)+qß(n)At 

+ _L_ /^(n+1/2) + ^(«-1/2)^  x  (#(n+l/2) + #(»-l/2)\  fa 
Amno \ '     v 

f(n+l)     _    f(n) + ^(n+1/2) At 

3 

j(n+l/2)     =     I  fp{n+l) + p{n)\ ^(n+1/2) 

£<n+l)     =    jg(n) + ^(Vx^(n+l/2))_^j(n+l/2)> (3) 

Much of the art associated with this discrete approach rests in the allocation of the particles 

to a cell in the grid, hence, the name PIC codes. There are many variations on this scheme. 

This differential equation set describes the motion of a charged particle in the presence of 

an electromagnetic field. Typically each numerical particle actually represents a composite 

number of real particles and these macro-particles are distributed in the cells of the grid at 

the positions f. These macro-particles are then pushed in the grid by the electromagnetic 

field E, H; the charges in motion then modify the electromagnetic field. The process of field- 

solve and particle-push are usually taken in a two-step process. The moving charges are used 

to define the charge density p and the current J everywhere in space-time. The fields are 



then obtained from these charges and currents. The resulting fields are in turn used in the 

force equation to push the charges. This leads to new charge densities and currents. The 

process is repeated through all the time steps in the simulation [1], [2], [3]. The algorithm 

thus proceeds in the following fashion: 

• calculate H updates 

• calculate the velocity updates from the Lorentz force 

• calculate the updates for the location of the particles 

• calculate the new charge and current densities 

• calculate E updates 

• repeat this cycle. 

Because space is discretized and the electromagnetic properties of the medium in which 

the particles are moving are assigned to each cell in the grid, very complex structures and 

materials can be handled with a PIC code. The major costs in a PIC code comes from the 

particle-push stage (~ 90% of the simulation time). The field-solve is quite efficient (~ 10% 

of the simulation time). Unfortunately, the larger the number of particles, the better the 

overall simulation results will be. This leads to very time consuming and costly calculations. 

Nonetheless, these PIC codes have been very effective in the design of many high power 

microwave (HPM) tubes and in the modeling of HPM effects associated with the large fields 

generated with these tubes. However, with the need to decrease the sizes of the sources while 

increasing their outputs, more exact numerical models of the microwave generation process 

are desired. 



One very interesting point is that many codes assign the particles to the grid cells through 

an interpolation or weighting scheme. As Birdsall [2] indicates, the grid charge density pj 

can be obtained from the charges qj located at the positions fj from the expression 

pft) = E*5(*W<) (4) 
t 

where S is a shape function which weights (interpolates) the particles which are found within 

a cell to their appropriate edge or node locations in the 0 grid finite difference scheme. The 

particles themselves are assumed to have finite size (macro-particles). Similarly the electric 

force on the particle qj takes the form 

FArj)   =   q^S^-r^E-dk (5) 
t 

where dk is the oriented length of the cell edge at ft. Because the weighting functions on 

the force and the charge density are typically selected to be the same, symmetric difference 

equations relating p{r) and E(f) in space result and ensure the conservation of momentum. 

This approach, in fact, eliminates the effects of the self-forces. 

If the fields are of sufficient strength, the plasma must be treated in a relativistic sense. 

One finds that if the relativistic momentum of a particle of rest mass rrij and charge qj is 

Pj    =    IjTTljVj (6) 

where the relativistic term is given by 

, - Hp(..£)- 



then the equations of motion of its position fj and momentum pj are 

dtTj 

d _ 

Pj 
Vj~ (my+pj)1'2 

dt Pj   =   Qj E + VjX B\= qj 
limj 

Vi    = 
Pj PjC 

ljmj     (m}#+p})W 
(8) 

The update equations become more complex because the Lorentz force equation becomes 

explicitly nonlinear with the presence of the relativistic term 7,-. Since it depends on the 

momentum, the relativistic term 7,- must be varied at each time step too [3]. A variety 

of schemes exist to handle these relativistic considerations. One straight-forward approach 

requires solving for an update in 7,- at each time step through the conservation of energy, 

i.e., 

l^.-^flJ)   -   SL.0..E (9) 

Other approaches include approximations which involve using the values of the velocity at 

the previous time step or some average between the current and previous values. 

Whichever scheme is used, the basic update equation set then takes the form 

At £(n+l/2)     =    #(n-l/2) _ ^ (y x £(n)\ 
t* 

^(n+1/2)     =    ^(n-m + J±_ pW - E^ 
J ■> mir*    J mijc' 



pjn+i) = pM + qäw&t 

Qj 

if+V  = f^B) + i(^B+1)+^B))At 

P(n+1)(r)   =   E^i3){r-rf+1)) 
3 

£(»+l)     =    ^(n) + Ai/Vx^(n+l/2)\_^J(n+1/2) ^ 

where, of course, ^jn+l^ = ^2ipjn+l/2K The particle-push and field-solve algorithm pro- 

ceeds as in the non-relativistic case. 

The development of a full-wave, vector Maxwell and generalized particle force equation 

simulator is key to the success of modeling the interaction of the intense electromagnetic 

fields with the plasmas found in HPM sources. The strengths of finite difference methods lie 

in their geometry modeling flexibility due to their subdomain (grid cell) structure and the 

ability for one to couple efficiently the numerical models of diverse space and time scales. 

However, one of the drawbacks of most PIC codes is the lack of the detailed microscopic 

dynamics in the particle motion. It does a simple Lorentz force action only. It does not 

include any additional particle effects such as the radiation reaction force and the collisions 

between the particles. Since a PIC simulation results in a description of the collective or 

average motion of many particles in the electromagnetic fields, a PIC simulation generally 

assumes that the averages of the particle motions will average-out these additional effects. At 



high velocities, hence, high kinetic energies and over very small distances that are comparable 

to the microwave wavelength being generated, this assumption is not strictly correct. 

One way in which more complex forces have been included in previous PIC calculations 

has been to include additional forces in the particle-push equations. A variety of methods 

have been introduced to model the electron-electron and electron-ion collisions including 

transforming to the spectral domain to deal with modifications of the Fourier components 

and introducing Monte Carlo calculations during the particle-push phase. Many of these 

techniques have difficulties because they restrict the applicability of the simulation space 

(periodic boundary conditions to handle the fast Fourier transforms) and introduce particle 

noise (additional randomness in the particle velocities). 

One of the first efforts of the project was to assess the magnitude of the effects of the 

self-force on a PIC calculation. Additionally, alternative schemes for writing the contin- 

uum equations were considered with the hope that one would lead to a more self-consistent 

numerical scheme. A PIC code was obtained to run test problems that could reveal any 

discrepancies with basic plasma theories. The results of these efforts are summarized in the 

next section. 

2     RESULTS 

The primary objective of this phase-one project was to develop a refined understanding of the 

physical processes required in a PIC calculation to accurately model microwave generation 

in a HPM source. A variety of physical processes were considered including self-forces and 

forces between the background plasma and the more energetic electrons. 

In Subsection 2.1 of this section we show that the self-force on electrons in linear high- 



power microwave (HPM) devices is negligibly small compared with the relativistic Newtonian 

acceleration force. In Subsection 2.2 we show that this result also implies that the self-force 

on groups of electrons in the cells used for particle-in-cell (PIC) computer code calculations 

is also negligible. In 1 2.3 we prove that the self-force on a charge moving in the direction of 

a constant, uniform electric field is zero, and thus its motion is completely determined by the 

relativistic version of Newton's second law of motion. Lastly, in Subsection 2.4 this equation 

of motion is solved for the final velocity of an electron traveling in the uniform electric field 

between two oppositely charged parallel plates. 

2.1    Estimate of the Effect of the Self-Force on Electrons in High- 

Power Microwave Devices 

To correctly determine the electrodynamics of charged particles, one must, in general, take 

into account both the fields radiated by the accelerating charges and the self-force experienced 

by each of the charges [4].   Consider a high-power microwave device containing electrons 
0 

traveling in approximately straight lines with an average speed u0 that can be close to 

the speed of light c, as shown in Figure 1. Assume that the HPM device is operating at 

a frequency u. In the laboratory inertial frame of reference, the Lorentz-Abraham-Dirac 

equation of motion of each electron can be written as [4, eq. (5.12a) and sec. 8.7] 

„2 

Feit = m|(7.)-^74 
dhx_     3f_   (du 
dt2 + c2 U \dt 

2' 

(11) 

where u(t) is the instantaneous velocity of the electron 

1 
7 = 

V7! " «V c
2 

(12) 

and m and e are the rest mass and charge of the electron, respectively. The permittivity of 

free space is denoted by e. The externally applied force in the direction of motion is denoted 
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by Fext(t) = eE(t), where E(t) is the electric field in the direction of motion due to all 

sources (except the electron in question). We are using the International System of Units 

(mksA) throughout. 

The first term on the right-hand side of (11) represents the relativistic generalization 

of Newton's second law of motion. The second term on the right-hand side of (11) is the 

self-force on the electron in question generated by the acceleration (and its time derivative).1 

This self-force term is usually neglected in particle-in-cell computer codes. Here, we want to 

determine if the self-force term is indeed negligibly small. 

We can greatly simplify the estimation of the self-force by moving to an inertial frame of 

reference K' moving with the average speed u0 of the electrons. In this K' frame of reference, 

the velocity of the electrons can be approximated by a sinusoidal function 

u' = «icosw'f (13) 

where f is the time measured in the K' frame, u' is the velocity of the electron in the K' 

frame {u\ is a constant and u[ < c), and w' is the frequency of operation of the HPM device 

as measured in the K' reference frame. It is related to the frequency u measured in the 

laboratory frame through the relativistic transformation 

u)' = 7ow (14) 

with 

7o = 
ic2 v7! - «8A 

Moreover, in the K' frame, the equation of motion (11) simplifies to [4, eq. (3.3)] 

(15) 

,   _    du'        e2   cßu' ,-gv 

since u[/c <C 1. 
xThe second term in (11) is not identical in form to that of the self-force term in [4, eq. (5.12a)] because 

the self-force term in equation (5.12a) of [4] reduces to the self-force term shown in (11) for rectilinear motion. 

11 



The equation of motion (16) can be written as 

F'ext = F'N-F'S (17) 

where 

*t=m£ (18) 
is the usual Newtonian acceleration force of the electron and 

F> = _J—1^L (19) 

is the self-force on the electron. The self-force will be negligible compared to the Newtonian 

acceleration force if 
< 1*51 > =   e2 < \<Pu'/dt>2\ > (20) 

< \F'N\ >     toe^m < \du'/dt'\ > 

where the brackets < > indicate the average per cycle. From (13) we find that (20) reduces 

to 
eV 

6irec?m 
< 1 (21) 

or with the help of (14) 

u, « ^ (22) 

or 

e27o 

1.6 x 1022 ,0Qs 
u < • (23) 

7o 
In HPM devices, 70 is usually on the order of 10 or less. Even in the largest accelerators, 

70 is seldom greater than a few thousand. Thus, one sees from (23) that the HPM device 

would have to operate at gamma-ray frequencies before the self-force became appreciable. 

2.2    Neglect of self-force in PIC computer codes 

In the previous section we showed that the self-force on individual electrons in HPM devices 

was negligible compared with the Newtonian acceleration force. However, in particle-in-cell 

12 



computer codes, many electrons are grouped together into one cell and each of these groups of 

electrons are treated as a single point particle with rest mass M and charge Q. Nonetheless, 

since M and Q represent the total mass and charge of a cell of Ne electrons, they are given 

by 

M = Nem ,     Q = Nee. (24) 

Moreover, for each electron in the cell we can repeat the analysis of the previous section to 

obtain a total Newtonian acceleration force on all the electrons in the cell equal to NeF'N 

and a total self-force on all the electrons in the cell equal to NeF's. Thus, the self-force on 

the "particle-in-cell" is negligible compared to the total Newtonian acceleration force if 

< \NeF's\ >   < m > 
< \NeF'N\ >     < \F'N\ > 

or, from (20)-(23), if 

< 1 (25) 

67rec3m      1.6 x 1022 ,na^ 
u < —= = • (26) 

e27o 7o 

In other words, whether for a single electron or a group of electrons composing a particle-in- 

cell, the self-force is negligible for frequencies of operation less than gamma-ray frequencies. 

One subtlety that should be mentioned concerns the mass M of the particle-in-cell com- 

posed of Ne electrons. We have assumed that this mass is given simply by M = Nem, where 

m is the mass of each electron. One could point out that to this mass should be added a mass 

of formation needed to bring the Ne electrons together in one cell from an infinitely large 

separation distance. However, since the cell is assumed small enough that all the electrons in 

each cell move together in the HPM device with little mutual electromagnetic repulsion, the 

energy of formation needed to overcome this mutual repulsive force between the electrons in 

any one cell is also negligible. Thus, the mass of formation, equal to the energy of formation 

divided by c2, is also negligible. 

13 



2.3    The Effect of the Self-Force on a Charge Moving in a Constant, 

Uniform Electric Field between Two Charged Parallel Plates 

In this section we shall prove a rather remarkable result [5, Sees. 5-3, 6-11]: The self-force 

term in the equation of motion completely vanishes for a charge (e.g., an electron) moving in 

the direction of a constant, uniform electric field such as the electric field produced between 

two oppositely charged parallel plates. As a consequence of this result, the motion of the 

electron, beginning at rest on the negatively charged plate (cathode), can be described 

exactly by the relativistic version of Newton's second law of motion. 

To prove the former result, write the Lorentz-Abraham-Dirac equation of motion (11) 

for an electron moving with velocity u(t) in the direction of and applied constant, uniform 

electric field E0, so that Fext = eE0 in (11): 

eE0 = m^u) - ^74 <Pu     372    (du 
~d¥+ c2U[dt 

2' 

(27) 

One can show [4, ch. 8] that the substitution 

7« = csinh (V/c) (28) 

converts (27) to 
dV        e2   d?V 
dr     &-K6C? dr2 eE0 = m— - -—^-7-5- (29) 

where dr = dt/j and 

7 = (1 - u2/c2)-> = (1 + sinh2 (V/c))* = cosh (V/c). (30) 

The solution to (29), with E0 independent of time and thus independent of r, can be found 

by inspection to be 
dV _ eEo /31x 
dr       m 

14 



Because dV/dr equals a constant, cßV/dr2 — 0 and (29) is satisfied. But since (PV/dr2 = 0, 

the second term on the right-hand side of (27) is zero and (27) can be written simply as 

eE0 = mjt(1u). (32) 

That is, the motion of the electron moving in the direction of a constant, uniform electric 

field is determined completely by the relativistic second law of motion (32), because the 

self-force in this constant, uniform electric field is identically zero. 

One can explain this strange and remarkable result by dividing the self-force term into 

two terms, an irreversible radiation reaction term and a reversible "Schott acceleration" term 

[4, ch. 7] 

„2 7 
d?u     Sf_   (du\2' 
dt* + <?U[dt) 

_fu(du\        d_f Adu\ 
c2   \dt)       dty  dt) y   ' 

The first term on the right-hand side of (33) is the irreversible radiation-reaction force cause 

by the momentum radiated by the electron being accelerated in the applied electric field. 

The second term is the reversible "Schott acceleration" force. It behaves as a reactive force 

that draws momentum from the reactive fields of the accelerating electron.   For a charge 

moving in the direction of an applied constant, uniform electric field, these two terms cancel. 

That is, the momentum radiated by the accelerating electron produces a retardation force on 

the electron that is just cancelled by the rate of change of momentum that the electron draws 

from its reactive fields. Of course, when the electron collides with the positive plate (anode), 

or travels through a hole in the positive plate into the force-free region, the reversible Schott 

momentum and energy is taken from the electron, leaving only the momentum and energy 

imparted by the applied electric field less the radiated momentum and energy. 

15 



2.4    Solution to equation of motion for an electron traveling be- 

tween two oppositely charged parallel plates 

We have just shown that the motion of an electron traveling in the direction of the electric 

field between two oppositely charged parallel plates is described by the relativistic second 

law of motion (32). Let us solve this equation of motion for the velocity of the electron. 

Assume the electron starts at rest at the cathode, and that the parallel plates (anode and 

cathode) are oppositely charged to a voltage V0. Let us find the final velocity uf as the 

electron reaches the anode, which is separated from the cathode by a distance d. 

Multiplying (32) by u, one finds that 

mc2^- = eE0u = e£0^ (34) 
at at 

where x is the distance of travel between the plates. Integrate (34) from x = 0 (the cathode) 

to x = d (the anode) to get 

mc2{jf-l) = eE0d = eV0,   7/ = (1 - u)/c2)~^ (35) 

or 
1 eVQ 

mc2 4-1 

Solving (36) for the final velocity Uf, we find 

Uf 

or 

- (eV0/(mc2 )+ I)-2 

(36) 

(37) 

uf = cy/l - (1.9569 x lO"6^ + l)"2. (38) 

For example, if Vo = 350,000 volts, the electron will be traveling at a speed of 

uf = .80484c (39) 

as it reaches the anode. As will be discussed below in Section 2.6, this result was confirmed 

with the Sandia National Laboratories, Albuquerque PIC code TWO-QUICK. 

16 



2.5    Alternate approaches to the PIC scheme 

In an attempt to explore schemes that might be more effective for microwave source pro- 

duction involving ultra-relativistic sources, we began exploring alternate approaches to these 

PIC algorithms. In particular, we considered one approach which is a one-step scheme in 

0 to the usual two-step field-solve / particle-push approach. The second scheme we consid- 

ered is in principle a two-step scheme but one which could potentially be more accurate for 

relativistic particle pushing. 

First we considered a continuous distribution of moving charges characterized by a charge 

density pq{r,t), a mass density pm(f,t), and a velocity v(r,t). We note first that the mass 

and charge densities are related by the expression 

Pm(f,t)    =     ^PQ{?,t). (40) 

Also the current can be written in the form 

J(f,i)   =   Pq(r,t)v(r,t)=v(r,t)V-(eE(r,t)). (41) 

. Maxwell's equations can then be rewritten in a homogeneous medium in the form 

Vx£   =   --B 

VxJ3   =   eix(jt+v-V\ E. (42) 

The force equation takes the form 

E + vxB   =   - (J^ + tf-v) (7*). (43) 

Writing the magnetic induction field in the form 
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B   =   -fvxEdt'. (44) 

one is led to the equations 

-VxVx f Ed?   =   en (— + uV-j E 

E-vxV x fEd?   =   — (QI + V-V) M • (45) 

from which one can write the velocity as 

v   = 
V 

L^ (J_VxVx pEdt' + ^-E 
• E \tV J dt   ) 

=   -U (±VXB-%-E) . (46) 

It is immediately apparent that the expression for the velocity leads to a highly nonlinear 

system of equations. In particular, one obtains in terms of the electric field E alone: 

£ + —U (— VxVx f'Edt' + ^-E)    x   VxfEd? 
V.£ \cii J dt   J J 

—# —* 
or, alternatively, in terms of E and B: 

E + -^(-VXB-^-E)XB   =   - (| + tf-v) (<yv). (48) 
V-.E  Un dt    J q   \dt J 

18 



Because it has been embedded in (47) or (48), the Lorentz force equation need not be 

considered explicitly. Discretization of both systems was attempted without much success 

for practical implementation. Explicit and semi-implicit update equations can be derived 

from (47) or (48). System (47) has too many curl operations to maintain a nice local stencil; 

system (48) has a similar problem due to the cross products. Nonetheless, they provide an 

alternative approach to obtaining the desired field quantities without having the intermediate 

step of the particle-push. 

An alternative two-step approach was also investigated.   If we consider the 0 particle 

equations in the presence of an electromagnetic field: 

dt . 
p^_ 
7m 

dt 
p»   = 

7m 
(49) 

where Ftf represents the anti-symmetric electromagnetic field tensor, their solution can be 

written in terms of an explicit integration as 

x*(t) 1   tf£«P (£*>)*» 
0 exp(^F^) P"(0) 

(50) 

This generates a solution in the eight dimensional phase space of the particles. The matrix 

operator can actually be reduced analytically using Lorentz group Lie algebra to achieve an 

explicit integrator. This would have the advantage of preserving the consistency between 

the momentum and energy conservation equations, i.e., the force equation and the equation 

for the 0 7 term. The usual leap-frog procedure discussed in Section 1 can lead to numerical 
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inaccuracies if these quantities become out-of-sync with each other. This explicit phase space 

integrator would circumvent these potential inaccuracies. 

In principle, one could rewrite the entire Maxwell-Lorentz system into such an explicit 

matrix integration scheme. This approach would be a single-step approach and it would 

have many advantages since all the field and particle quantities would be integrated forward 

in time simultaneously. Unfortunately, this approach appears to have a high cost in terms 

of its memory requirements. For instance, even for the state space system, the update for 

x*(t) at each point in the grid would encompass a running sum of the field at every point 

in the grid. On the other hand, it may be possible to adapt this approach to include the 

effects of radiation damping by using the more general force equation given in [4]. However, 

as shown in 2.2, these self-forces can be neglected and the Newtonian force is sufficient for 

HPM purposes. 

2.6     PIC Code Validation 

The TWO-QUICK PIC code was acquired from Sandia National Laboratories - Albuquerque 

(SNLA). This simulation software also required installation of IDL; it acts as the graphical 

user interface (GUI) for the TWO-QUICK PIC code. The documentation associated with 

this code is minimal. The TWO-QUICK code developers were very generous with their 

thoughts and time on how to get started running the code. Nonetheless, the learning curve 

was steep even to try some simple examples. 

Because of the costs associated with these PIC simulations, only a variety of simple test 

problems were run; the results agreed with basic physics principles and solutions. No 0 

results for simple problems were found, especially for the parallel-plate case discussed in 

2.4. In particular, the parallel-plate problem was run with a minimum of two particles (the 
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particle generation routines in TWO-QUICK would not permit a single particle test case) 

and with several thousand (to see if the particle statistics mattered). The energy and particle 

fluxes at the anode were measured to extract the information needed to calculate the velocity 

of the particles at the anode. For the two electron case the code predicted the final particle 

velocities at the cathode to be v = 0.80402 c rather than the analytical value of v = 0.80484c, 

a 0.1% error. With many particles, the result changed trivially. Thus, the TWO-QUICK 

code reproduced the analytical values to a very high degree of precision. 

The parallel-plate case is actually a very difficult problem for most PIC codes since it is 

basically an electrostatic problem that mainly exercises the particle-push algorithm. There 

were several different ways to set up this problem and the information produced comes in 

several different forms. As with any PIC code, care needs to be exercised in running the code. 

Special considerations must be given to the spatial grid size, the corresponding time step 

sizes, the number of particles in the simulation, and the types of sources used to generate the 

particles. Moreover, since much of the post processing information is in the form of particle 

fluxes, energies, momentums, etc., for the discrete particles, care must be exercised in using 

the output quantities correctly to obtain the desired values. Nonetheless, experienced users 

with a well-validated PIC code can produced reliable values for the quantities of interest. 

3     Conclusions 

The effects of the self-force in PIC calculations were considered. It was explicitly demon- 

strated that the usual Maxwell-Lorentz equation system does not suffer from the lack of a 

self-force treatment in the particle-push stage of the PIC solution process. In particular, the 

self-force was estimated and found to be negligible in HPM applications for frequencies less 

than gamma-ray frequencies. We also used the SNLA PIC code TWO-QUICK to simulate 
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the final velocity of a single particle traveling between two oppositely charged parallel plates. 

The simulated final velocity agreed with the exact analytically derived final velocity to within 

0.1%. Several alternative approaches to treating the Maxwell-Lorentz system numerically 

were also considered. It was found that the standard two-stage, particle-push and field-solve, 

scheme is one of the most efficient numerical approaches one can apply to modeling plasmas 

in high power microwave devices. The alternative single-stage approaches may, in principle, 

produce more accurate results, but they are not presently amenable to a practical numerical 

implementation. 
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